Public Meeting with NEI and Industry "An Optional, Risk-Informed Approach For Resolution of the PWR Sump Blockage Issue (GSI-191)"

Presenters: Mark G. Kowal, 301-415-1663 Donald Harrison, 301-415-3587

> Rockville, MD June 17, 2004

Purpose of Meeting

- Continue discussions between the staff, NEI and industry regarding a risk-informed option for resolving GSI-191
 - Discuss proposed methodologies and approaches
 - Provide feedback to NEI regarding their proposals from the May 25, 2004 public meeting
 - Discuss the path forward for a risk-informed approach
 - Discuss schedule and milestones
 - Obtain stakeholder comments

Milestones

- Brief ACRS Thermal-Hydraulic Subcommittee June 22 -23, 2004
- NEI Evaluation Guidelines Chapter 6 submittal June 30, 2004
- SECY Information Paper to Commission July 2004
- Draft SER prepared August 1, 2004
- Brief ACRS Thermal-Hydraulic Subcommittee August 17, 2004
- Final Draft SER prepared August 31, 2004
- Brief ACRS Full Committee September 8 10, 2004
- Brief CRGR September 14, 2004
- Issue Final SER September 30, 2004

Possible Risk-Informed Approach

NRC Staff could consider a risk-informed exemption process:

- Plant-Specific risk-informed exemptions in accordance with 10 CFR 50.12
- Exemptions from 10 CFR 50.46 (c)(1) design-basis loss-of-coolant accident equivalent in size to a double-ended guillotine break of the largest pipe in the reactor coolant system
- Exemption applies only for demonstrating that the requirements of 10 CFR 50.46 (b)(5) are satisfied - Debris generation for Long Term Cooling

Technical basis

- In accordance with Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis," and NUREG-0800, Standard Review Plan Chapter 19
- Design-basis, deterministic analyses necessary to verify compliance with 10 CFR 50.46 (b)(5) for break sizes up through a "debris generation" break size that may be less than a double-ended guillotine break of the largest pipe in the reactor coolant system

Possible Risk-Informed Approach

Technical basis (continued)

- Ensure mitigative capability for breaks larger than the "debris generation" break size up through the double-ended guillotine break of the largest pipe in the reactor coolant system:
 - Breaks within this range remain within the design basis
 - · Define and satisfy acceptance criteria
 - · Funtional reliability of necessary equipment
 - · Overly conservative, design-basis assumptions would not be necessary
 - Equipment necessary to mitigate may not need to be safety related or single failure proof

NEI Evaluation Guidelines

- Process and approach would be included in industry evaluation guidelines
- Evaluation guidelines would include a 'template' for licensees to follow
- Approach would be considered by the staff as part of evaluation guidelines safety evaluation report
- NRC staff would review plant-specific exemption requests

"Debris Generation" Break Size Selection

- Break size selection for design-basis and 'realistic' analyses for debris generation (application to 10 CFR 50.46 (b)(5) only)
 - NOT REDEFINING THE DESIGN-BASIS LOSS-OF-COOLANT-ACCIDENT BREAK SIZE
 - All PWR reactor coolant system auxiliary piping up to and including a double-ended guillotine break
 of any of these lines -design basis rules apply
 - Reactor coolant system main loop piping (hot, cold and crossover piping) up to a size equivalent to the area of a double-ended guillotine break of the plant's largest auxiliary piping - design basis rules apply
 - Breaks in the reactor coolant system main loop piping (hot, cold and crossover piping) greater than
 the above size, and up to the double-ended rupture of the largest pipe in the reactor coolant system
 ensure mitigative capability for these breaks

Basis

- Double-ended guillotine breaks in auxiliary piping cannot currently be ruled-out
- Recognizes that double-ended guillotine breaks are less likely in more robust reactor coolant system main loop piping

Risk-Informed Approach Used to Evaluate Acceptability

- Demonstrate Regulatory Guide 1.174 acceptance guidelines are satisfied for full range of break sizes (up through DEGB of largest pipe in the RCS)
 - Change in core damage frequency and large early release fraction calculations
 - O Defense-in-depth
 - Safety margins
- Change in risk calculation between current sump conditions (with credit for modifications and/or crediting non-safety equipment) versus sump performance under intended design capability
- PRA quality requirements
- LBLOCA Frequency considerations
- Condition the exemption licensee must validate results bound the final expert elicitation results

Break Location Considerations NEI Proposal

- For breaks larger than the "debris generation break size" NEI Proposes to use only main RCS loop piping break locations identified using:
 - SRP 3.6.2, "Determination of Rupture Locations and Dynamic Effects Associated with the Postulated Rupture of Piping."
 - Branch Technical Position MEB 3.1, "Postulated Rupture Locations in Fluid System Piping Inside and Outside Containment."
- Debris generation analyses would not necessarily consider DEGB at these locations because of pipe restraints located at these locations
- "Mitigation not demonstrated" portion of NEI's block diagram includes unlikely break sizes occurring at unlikely break location

Break Location Considerations NRC Staff Position

- NRC rejected similar BWROG proposal (staff SER on BWROG URG) inappropriate to cite SRP 3.6.2 as a basis for determining pipe break locations to demonstrate compliance with 10 CFR 50.46:
 - "SRP Section 3.6.2 does not provide guidance or acceptance criteria for demonstrating compliance with 10 CFR 50.46"
 - "The BWROG has not demonstrated that break locations selected consistent with SRP Section 3.6.2 would bound the worst-case debris generation scenarios and, therefore, meet the intent of 10 CFR 50.46"
- Regulatory Guide 1.82, Rev. 3 suggests that a sufficient number of break locations be considered to "reasonably bound" variations in debris generation by size, quantity and type:
 - Largest amount of potential debris generation within the ZOI
 - Most variety of debris types
 - Areas with the most direct path to the sump

Break Location Considerations NRC Staff Position

- Regulatory Guide 1.82 suggests that a sufficient number of break locations be considered to "reasonably bound" variations in debris generation by size, quantity and type: (Continued)
 - Medium and large breaks with the largest potential particulate debris to insulation ratio by weight
 - Breaks that generate an amount of fibrous debris that, after transport to the sump, create a uniform thin bed that could filter particulate debris and substatially increase head-loss (thin bed effect)
- 10 CFR 50.46 rulemaking on path to require demonstrated mitigative capability up through a DEGB of the largest piping in the RCS, independent of break location - not planning to identify specific break locations
- <u>Staff Position</u> for breaks larger than the "debris generation" break size, a risk-informed approach to resolve GSI-191 should require demonstrated mitigative capability up through the DEGB of the largest pipe in the RCS, considering break locations which result in the worstcase scenarios for ECCS <u>Sump recirculation capability</u>

Exemption Request

- NEI proposed a method which would not require an exemption request
 - Proposal involving license amendment requests and 10 CFR 50.59
 - NEI has submitted a white paper discussing this proposal (ADAMS Accession No. ML041660350)
 - Staff is currently evaluating this proposal

Risk Calculations

- NEI proposes "qualitative risk arguments"
- Staff recommends an approach consistent with Regulatory Guide 1.174
 - Regulatory Guide 1.174 provides methods acceptable to the staff for risk-informed licensing changes, and includes demonstrating that change in risk is small (CDF and LERF)
- Staff position would not consider a qualitative risk argument:
 - Would require an appropriate level of quantitative analysis to demonstrate that any change in risk would be small, and within the acceptance guidelines of Regulatory Guide 1.174

Discussion Items

Mitigative Capability Analyses

- Define analyses to be performed
- Assumptions
- Relaxation of conservatisms
- Treatment of equipment needed to mitigate
- Acceptance criteria

NEI Evaluation Guidelines - Chapter 6 contents

- Regulatory process requirements template
 - Exemption requests, license amendment requests, 10 CFR 50.59 changes
 - · Plant-specific submittal package and documentation requirements
- Technical justification requirements template
 - Elements of Regulatory Guide 1.174 (Defense-in-depth, safety margins, risk calculations)
 - "Debris generation" break size selection
 - · Risk calculations and results
 - · Design basis analyses
 - · Mitigative capability analyses

Discussion Items (Cont.)

- NEI White Paper (ADAMS Accession No. ML041660350)
- Actions needed to meet the schedule

